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A simple lattice version of the nonlinear Schrodinger equation 
and its deformation with an exact quantum solution 
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i UniversitH di Roma Ill, Dipartimento di Fisica and Btituto Nazionale di Fisica Nucl-, 
Sezione di Roma, P le A Mom 2,00185 Rome, Italy 

Received 7 April 1994. in final form 26 June 1994 

Abstract. A lattice version of the quantum nontinex SchrEdinger (NU)  equation is considered, 
which has a significant simple form and fulfils most of the criteria desirable for such lattice 
variants of field models. Unlike most of the known laltice NLS equations. the present model 
belongs to a class which does not exhibit the usual symmetry properties. However. this lack 
of symmetry itself seems to be responsible for the remarkable simplification of the relevant 
objects in the theory, such as the Lax opentor. the Hamiltonian and other commuting conserved 
quantities as well as their specva The model allows exact quantum solution through the algebraic 
Bethe ansatz and also a straightfonvard and namml generalization to the vector case, thus giving 
a new exact lattice version of the vector NLS model. A deformation representing a new quanNm 
integnble system involving ramm-Dancoff-like q-boson operators is conshucted. 

1. Introduction 

Among integrable systems, discrete models represent a special class, interest in which has 
been revived in recent years [1-3]. In the context of quantum integrable systems, apart 
from being themselves solvable quantum lattice models, they also play an important role 
by providing lattice regularized versions of the corresponding continuum models. Thus, 
the lattice nonlinear Schrodinger (ms) 14-91 and lattice sine-Gordon [7] models, etc, are 
useful for finding out the exact quantum solutions of the related field models through the 
quantum inverse-scattering method (QISM) [lo]. Moreover, these lattice versions are often 
able to unveil the hidden algebraic structures of the original field models [I ,  1 I]. 

Ideally, a candidate for such quantum integrable discrete models represented by the Lax 
operator L(njA) should fulfil the following basic criteria: 

(i) It should satisfy exactly the quantum Yang-Baxter equation (QYBE) 

R(A - ILMQ 8 .U) = 8 L(.VR(h - IL), (1.1) 

(ii) It should have the same quantum R-matrix as the corresponding field model. 
(iii) The discrete Lax operator should yield the continuum operator at A + 0 

(iv) The Hamiltonian of the discrete model should be 'local' and retum the local field 
L(nlA) + 1 + A.C(x, A), A being the lattice constant. 

model at the continuum limit. 
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Moreover, as a desirable physical requirement, the Lar operator, as well as the 
Hamiltonian and the energy spectrum, should be as simple as possible. 

A discrete version of the NLS model was first suggested by Ablowitz and Ladik [SI. 
However. the corresponding R-matrix, a key object in the QISM, is expressed through 
trigonometric functions [I21 and does not coincide with the well known rational R-matrix 
of the NLS field model, which reads as 

/ X - i K  \ 

That is, criterion (ii) laid down above is not satisfied. Subsequently, a different discrete N E  
was proposed [6],  constructed through the Holstein-Primakoff transformation (HPT) applied 
to an infinite-dimensional irreducible representation of su(2)  with the classical Lax operator 
given by 

related to spin parameter s = -A with c = 1 and canonical Poisson brackets 
I@(n),  @(MI = L. 

This model is free from the earlier drawback, namely it satisfies (ii), though it  now fails 
to fulfil the locality criterion (iv) at the quantum level. As a remedy, another version of 
the lattice NU was introduced [7], represented by a Lax operator which depends explicitly 
on lattice points and may be expressed as a product I(nlA) = L(2nlX)L(2n - llh), where 
L(nlA) is taken as in (1.3) with c = 1 + i ( - l ) " ~ A ,  i.e. 

U n  IM 
IC i ( - l j " K A -  ;AA+ ;A2+(n) '+ (n j  -i+(n)'AdK(l + f ( - l ) n K A +  $A2J(n ) '+ (n ) )  

I +  i ( - - I ) " K A  + ;AA+ :A?+(n)'+(n) =( iA,/K(l + i ( - l ) " ~ A +  ;A'+(n)'$(n))+(n) 

(1.4) 

This model satisfies the required criteria but looks very complicated and does not, 
therefore, comply with our physical requirement of simplicity. Finally, in a further 
investigation [SI, a relatively simple model was proposed, where the Lax operator was given 
directly by (1.4). However, the important criterion (iii) is not fulfilled and the simplification 
achieved is also not fully satisfactory, as is evident from the form of the Lax operator and 
structure of the following Hamiltonian: 

N 

8 - 2 ~ A  n 
H=-- 

where the local density r, again has different expressions depending on whether it 
corresponds to even or odd sites. For odd n, it takes the form 

t. = (or+(n +2)or(n + I))-' {(or+(n)or(n - I ) ) - ' ( c i+ (n  + I)ci(n))-'(ci+(n + ~ ) o p ( n  - 1)) 

x (or+(n + 2)or(n + I))-' (1.5a) 
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with 

and at even n sites. different, though similar, expressions hold for both tn and a ( n )  [8]. The 
energy spectrum of this model obtained through the Bethe ansatz is also rather complicated 
and is simplified only at the continuum limit. As far as we know, until now, not many other 
proposals have been invoked to improve this situation [9],  particularly to achieve simpler 
forms of local conserved quantities at the lattice level. However, a completely different 
approach was formulated in  [4] through equivalence between NLS and spin models using 
quantum-space intertwiners. 

Our primary aim here is to consider a quantum integrable lattice model, which at the 
continuum limit yields the more general AKNS system [I31 and, as an allowed reduction, 
the NLS field model. The system considered fulfils all the desirable requirements of a 
discrete quantum system listed above and, most importantly, exhibits considerably simpler 
expressions for the related conserved quantities at the lattice level. Indeed, it satisfies the 
QYBE exactly with the same rational R-matrix (1.2) and also allows solution via the QISM, 
yields a local Hamiltonian and returns both the Hamiltonian and the Lax operator of the 
NLS field model at the continuum limit. Moreover, it has an extremely simple structure 
which induces an almost trivial form for the projector required for the construction of local 
Hamiltonians. Remarkably, this projector turns out to be field-independent and symmetric. 
As a further relevant feature, our model also allows a natural vector generalization at the 
lattice level. Finally. it admits an integrable deformation involving Tam-Dancoff (TD). 
type q-bosons. On the other hand, for achieving all these agreeable properties, one pays 
the price of the non-Hermitian nature of the physical observables at the lattice level. At the 
same time, the associated Lax operator lacks the usual SU(2)  (SU(1, 1)) symmetry. 

We should stress here that such Lax operators with lesser symmetries were found also 
to be significant in generating a large class of quantum integrable models [ l  11. 

2. The classical model 

The model under scrutiny may be given through the Lax operator of the form 

Its simplified structure compared to ( 1.3) is explicit, though due to the non-conjugacy relation 
between @ and p, it is obviously not Hermitian. Note that similar forms of L-operators 
also appear when analysing descrete self-trapping systems [I41 as well as integrable systems 
close to the Toda lattice [15]. 

Recently, the bi-Hamiltonian structure of the classical system corresponding to (2.1) has 
been determined and its complete integrability has been rigorously established I161 through 
the explicit construction of action-angle variables using the r-matrix approach. Recall that. 
at the classical limit, the QYBE (1.1) reduces to the classical Yang-Baxter equation 



6338 

For the present model, the quantum R-matrix is given by (1.2) and is related to its classical 
counterpart r by 

A Kundu and 0 Ragnisco 

1 A - P R ( { )  = I - iKr({) c F 
r ( < )  = --P. 

Now, to show the transition of the Lax operator to that of the continuum model, one 
should put { = l+iAA and @(n) + i f i q ( n ) ,  @(n) + -ifi '$(n), which by introducing 
@(n) = f lx?+* @ ( x )  dx, and a similar expression for +, would yield, from equation (2.1), 
L(nl{)  = 1 + A&. A) + O(A2). 

L(x, A) is the Lax operator of the corresponding field model, given by 

It may be  easily checked that the conserved quantities associated with this system are the 
same as those of the A m S  system [13]; moreover, since their Poisson structures coincide, 
one may conclude that the two systems are equivalent. In fact, through a simple gauge 
transformation 

C + hCh-' t h,h-' h = exp (2.3) 

this L-operator can be changed into the standard Lax operator of continuum NLS 

restoring the unitary symmetry, since, as is well known, the AKNS system allows the 
reduction @ = q'. 

3. Quantum model 

Recently, more general forms of the L-operator of discrete quantum integrable models 
corresponding to standard R-matrices have been proposed [ 1 I]. Such a class of L-operators 
associated with the rational R-matrix (1.2) and satisfying the QyBE may be given by the 
following expression which clearly lacks the unitary symmetry: 

where K-operators satisfy the algebra 

[K+,K-I=(KIK4-K2K3) [KI,K31=0 
(3.2) 

[KI I Kal = [ K 3 ,  K+I = ~ K d 4  

with K z ,  K4 as central elements. It may be seen that when KI = -K3,  K2 = Kq = 1 and 
K+ = ( K - ) t ,  equation (3.2) reduces to the standard su(2)  algebra and one can get back 
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the known lattice NLS (1.3) through HPT. However, the L-operator (3.l), in general, gives 
the possibility of generating other quantum integrable models which do not exhibit such 
symmetry. The quantum Toda chain is one of the main examples [ll]. It is interesting to 
observe that the quantum version of the NLS model (2.1) considered here, also falls into this 
class and can be obtained from (3.1) through the following realization: 

K1 = A%@$ + I K z  = -AK K3 = 1 Kc = 0 
(3.3) 

where the operators 9, @ obey the canonical commutation relation [ @ ( n ) ,  @(m)] = $,,,. 
This quantum model, represented by the Lax operator 

K+ = i A & b  K- = -iA&@ 

(3.4) 

as a descendant of the integrable ‘ancestor’ model (3.1), is naturally quantum integrable 
and satisfies the QYBE with the same R-matrix (1.2) as the NLS field model. 

In exact analogy with the classical case, equation (3.4) allows transition to the Lax 
operator of the AKNS system and, through allowed reduction, to that of the continuum 
quantum NLS model. Indeed, the gauge transformation (2.3), being independent of the field 
operators, is  clearly applicable to the quantum case as well. 

It is known 171 that the conserved quantities C, may be obtained from the transfer matrix 
?(A) = tr(nk L(n1.h)) through an expansion at a special point v in the form 

In what follows, we use the method developed in 17.81. The locality of the Hamiltonian 
and other conserved quantities can be achieved provided that at this special point v the 
operator L(h)  is expressible both as a ‘direct’ and an ‘inverse’ one-dimensional projector 
[7,9]. This in turn implies the vanishing of its quantum determinant 161 det, L at this point, 
where 

det L = tr(P-(L(h) 8 L ( h  + k ) ) )  
4 

with P- = +(I  - E, uu 8 ua) being the antisymmetrizer and L = L ( h ) ,  i = L(h + itc). 
We observe that for Lax operator (3.4), one gets dety L = 1 - ihA, giving a single 

degeneracy point uI = -i/A. The resulting projector depends on the field operators and 
one cannot avoid the implementation of the involved procedure discovered and applied in 
[6-8] and elaborated in 191. Fortunately, however, under an irrelevant scaling of the Lax 
operator L + i = (i/hA)L, which evidently does not affect the QYBE and, thus, can only 
give equivalent lattice models. The quantum determinant becomes 

d e t i = - - (  1 I - i h A  ) =  + A) 
Y Az h(h + i K )  Az(l + K e )  

where 5 = i /A.  That is, another degeneracy point ( = v2 = 0 naturally appears. 
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The rescaled operator i takes the form 

(3.4') 

with N ( k )  = 1 + ~ A ' 4 ( k ) q ( k ) .  At the new degeneracy point e = u2 = 0, it becomes 
remarkably simple as it turns into a field-independent projector 

The above procedure amounts essentially to choosing the expansion point at A = W. We 
emphasize that the existence of such an exceptional expansion point where the projector 
becomes field independent is possible only due to the asymmetry of the present model, We 
note incidentally that an analogous property also holds at the classical level [16]. As a 
consequence, due to the almost trivial form of i ( 0 )  (3.5), as we will see now, not only is 
the required locality condition satisfied, but the derivation as well as the expression for the 
Hamiltonian and the other conserved quantities becomes extremely simple. 

For explicit calculations we use now i and expand around 5 = 0 assuming periodic 
boundary conditions, dropping, however, the har sign from all subsequent expressions. This 
gives 

r(0) = tr n L(ktt)l(c=o) = 1 (3.54 ( ) 
a 

--r(OI+o = r'(O) = ~C(L(NI~)...L'(~I~)...L(II~))I(~=~) 
a t  k 

1 
= - N ( k ) .  

' k  

In a similar way, one gets 

where a factor 2 appears due to the identity 

(. , . L ( i ) .  . . L ' ( k ) .  . = (. . . L ' ( i ) .  . . ~ ( k )  . . 
and is valid since L"(6) = 0. Continuing further, we get 

(3.5b) 

(3.5c) 
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Notice that the conserved quantities ck may be given through the above expressions (3 .5)  
in the following form: 

C1 = - ( l O g T ( c ) ) ' l ( c  =O) = -r(O)-'r'(o) 

cz = -((logs(())"I(c = 0) = - [r(O)-'r"(O) - (T(O)-'~'(O))~] 

I 1 
K K 

1 1 
2K 2K 

1 1 
3!K 6K c3 = - ( ( l O g T ( ~ ) ) " ' 1 ( ~  = 0) = - ['2(T-'r'(o))3 + T-'r"'(O) - z(T-'r '(o)) 

X ( T - '  T " ( 0 ) )  - (5-' T"(o))(T- '  S ' (o ) ) ]  

where T- '  = T - ' ( O ) .  Inserting now the expressions ( 3 . 3 ,  one finally obtains the required 
observables 

1 
N = CI = N ( k )  

!. 

as the 'number' operator, 

(3 .6a)  

(3 .6b)  

as the 'momentum' operator and 

- [ N ( k )  + N ( k  + I)]$@ + l ) @ ( k )  + ( 3 ~ A ' ) - ' N ( k ) ' l .  ( 3 . 6 ~ )  

as the Hamiltonian of the system. 
It may be noted that the above conserved quantities are not symmetric in 4 and 111, which 

is a consequence of the asymmetry of the Lax operator. On the other hand, their locality 
is explicit and it is interesting to observe that even though expressions ( 3 . 3 ,  given through 
expansion of T ( [ ) ,  are all non-local, in the corresponding conserved quantities (3.6).  all 
such non-local terms cancel among themselves leaving only the local terms, as occurs also 
in the classical case. We stress again that the evident simplicity of expressions (3 .6a-c)  for 
the conserved quantities is the most prominent feature of the present model. 

The transition of these conserved quantities to those of the NLs field model is easily 
achieved at the continuum limit by taking 

(3 .7a)  

P = 2( ( P X  + & ) ) l ( A + o ,  = p (4x111 - 4111d (3 .7b)  
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with the standard assumption of a vanishing boundary condition. It is worth remarking that 
the continuous conserved quantities (3.7) of the AKNS-type system are now symmelzic in 4 
and +, which allows, therefore, the reduction @ = +'. yielding the known expressions for 
the N U  field model. 

The evident closene~s between the conserved quantities (3.6) of the lattice version with 
those of (3.7) related to the continuum model is a noticeable feature of the present niodel. 
For solving the eigenvalue problem for the Hamiltonian of the discrete model exactly, we 
go along the well established steps [SI of the algebraic Bethe ansatz, which forms the basic 
tool of the QISM [lo]. Defining the monodromy matrix as 

A Kundu and 0 Ragnisco 

we get the expression for the transfer matrix as s(h) = tr(T(h)) = A(1) + D(h),  which 
generates the conserved quantities, while B(h),  C(h) act as 'creation' and 'annihilation' 
operators, respectively. The n-particle eigenstates may be defined as In) = ny B(hi)lO) 
with the 'vacuum' properties 

C(h)lO) = 0 A(h)lO) = a(h)NIO) D(1)IO) =d(h)N1O). 

The QYBE for the monodromy matrix is given again by equation (1.1) with L-operators 
replaced by the corresponding T-operators. In elementwise form, this equation yields the 
'commutation' relations 

[ A @ ) ,  = ID@), D(P)I= [ B ( V ,  B(P)I = [C(h),  C(h)I= 0 

with 

The eigenvalues of r(h) giving the physical observables may be obtained by using the 
commutation relations (3.8) between A,  B and D, B and the properties of the 'vacuum' 
stated above. Skipping out the details, we present only the main results as follows 

r(h)ln) = E ( h ,  (hj1)ln) (3.9) 

where 

(3.10) 

Note that the form of eigenvalues (3.10) is obtained providing the parameters hi satisfy the 
condition [ 101 

(3.11) 
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We define the For the present case. we obtain a(5) = ( 1  + i), d ( 6 )  = $. 
Hamiltonians by 

where a-N is included to remove irrelevant constant terms and to avoid linear combinations 
of conserved quantities. Thus, we get from (3.10) 

i a  
n!K a p  ck = --logf(6)kt=O) 

where 

which finally yields 

N=-Cl = n ,  

(3.12) 

(3.13) 

We observe that the energy is proportional to Ai, the momentum is proportional to hk and 
the number of particles is equal to the quasiparticle excitation number, as required. Note 
again that this result concerning the descrete model under consideration is similar to that 
of the NLS field model [IO] including the combinations of different conserved quantities to 
determine the momentum and energy spectra. However, contrary to the continuum case, 
here the values of the AK'S are not arbitrary and should be determined from equations (3.1 l), 
which for the present model are 

(3.14) 

We should emphasise that the energy spectrum of this model obtained above and the related 
constraints on hk are, indeed, extremely simple. 

4. Vector generalization of the model 

It is interesting to observe that the models violating the SU(Z)-type symmetry, proposed in 
11 I], can easily be generalized for the g l ( N )  case. Out of such generalized systems, one 
might then construct quantum integrable models, like the multi-component Toda chain, 
vector NLS etc, as realizations through a set of independent bosonic operators. Such 
generalized systems are given by the Lax operator 
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where ( c ; , ) ~ l  = 6ik6jl are the generators of g l ( N ) .  It can be shown that the above L-operator, 
associated with the rational ( N * x N * )  R-matrix (R(h) = l+i$ll where Il = Elk ekl@elk), 
satisfies the QYBE if the generators K yield the following algebra: 

[Kmkp  K ~ I I  = K k K m /  

A Kundu and 0 Ragnisco 

(k # 1 # m) [KW. KIXI = K,+K; - K-K+ X I  (k # 1) 

[K:. Kkll = KXI 'q (k # 1 )  [KL+* & X I  = -KlkK; (k # 0 (4.2) 

[K:, K / ~ I  = [Kki, K X ~ I  = [ K ~ I ,  GII = [KN. K,,I = o 
where K -  commute with all other generators: [K;, K j j ]  = 0 and thus are central elements, 

su(N) algebra, which, however, is recovered at some particular symmetric reduction. 
Different realizations of this algebra would generate, through (4.l), different quantum 

integrable models, which would share the same rational R-matrix but generically would not 
exhibit unitary symmetry. Consider now a realization of (4.2) through a set of independent 
operators with the commutation relations [$ I ,  = &a and [ $ I ,  $XI = [@I,.&] = 0 in the 
form 

(k # I  # m) 

while K ,  i form an Abelian subalgebra. We may notice again that, in general, this is not a 

K t J = @ j  K J 1 = 4 j  K i j = O  l c ( i , j ) < N .  

The corresponding Lax operator (4.1) will then read 

(4.4) 

This Lax operator, which yields a quantum integrable lattice model, gives the vector N U  
model [17, I S ]  at the continuum limit and is a natural generalization of (3.4) to the vector 
case, The associated R-matrix also coincides with that of the field model [ I S ] .  Thus, (4.4) 
is related to the Lax operator of a new exactly integrable lattice version of the vector NLS 
model. The corresponding classical system has been considered in [16]. 

5. A novel quantum integrable Tamm-Dancoff q-bosonic model 

A number of lattice models involving q-oscillators, which are integrable at the quantum 
level, have already been discovered [ 1 I ,  191. Most of these models are related to the quantum 
group structures associated with the trigonometric R-matrix, which forms a separate class 
entirely different from the NLS model with rational R-matrix (1.2). We present here an 
integrable deformation of the discrete NLS model (3.4). which involves Tamm-Dancoff 
(TD)-type q-boson operators [20] but at the same time is related to a rational R-matix. 

It has been shown in [ I  11  that for a 'symmetry breaking' transformation [21], Ri;'(A) --t 
e''(j-')Ri;'(h) of the original R-matrix (1.2) where8 is someconstant parameter. The algebra 
(3.1) of K operators is also deformed in an interesting way. We find a realization of this 
deformed algebra through Tamm-Dancofi (To)-type q-bosonic operators 6 ,  c, N 

[b. NI = b IC, NI = -C bc - qcb = qN (5.1) 
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where b and c are not. in general, Hermitian conjugates of each other. Here we have 
introduced the parameter q = cia. One may compare the above TD-type q-deformed bosons 
with the standard q-oscillator algebra [22]: [a ,  NI = a ,  [at ,  NI = -at, aat -qat, = q-N. 
The algebraic relations (5.1) yield the Lax operator of the corresponding model as 

where f (N)  = qf"-+'. 

deformed rational R-matrix 
Note that it  represents a quantum integrable system, which satisfies the QYBE with the 

(5.3) 

Evidently, at q + 1, one recovers from (5.3) the Lax operator (3.4) of our discrete NLS and 
also obtain Rq -+ R as in (1.2). 

There is a simple mapping from such TD-deformed operators to the operators of the 
original lattice NLS model as b = f ( N ) @  and c = f ( N ) $ ,  recovering the canonical relation 
[@, $1 = 1; accordingly, the Lax operator (5.2) is mapped into (3.4) by 

Lq(n) = q i " ( + i ) L ( n ) N ~ .  

Hence, this To-type deformed bosonic system represents a new quantum integrable lattice 
model which can be solved through the algebraic Bethe ansatz using the results reported in 
section 3. 

6. Concluding remarks 

After the completion of this work, references [23,24] were brought to our notice. In [23], 
as a fundamental contribution, a most general form of L-operator for the lattice NLS was 
found, which provides the basis for classification of all L-operators related to the R-matrix 
(1.2). The physical and mathematical properties of lattice NLS along with many other models 
have been discussed in great detail in 1241. We have checked that the general L-operator 
of [23] may be represented by (3.1) for a particular realization of algebra (3.2) through 
(+#t(n). @@)) with [@t(n)9 @(a)] = 1 as 

K ]  = iKa;')@+(n)@(n) +a:'' K Z  = -iKa,!"K3 = -iKd @ t (n)@(n)  + d;') 

K4 = -iKd;l' K+ = Kp(fl)@(n) K-  = @'(n) 

where 

p ( n )  = KaA"dj"lb.T(fl)+#(n) + i(a,?dA') - d'l'a'o'). n n  

Since the Lax operator (3.4) of our lattice model is also a special case of (3,1), it is naturally 
consistent with the form (6.1) related to the L-operator of [23], which, thus, gives another 
basis for its validity. 
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A few more comments are in order at this point, to stress the different motivations 
underlying our paper with respect to [23]. In fact, the basic goal pursued and brilliantly 
achieved in 1231 was to find a family of L-operators which generate all the monodromy 
matrices related to the XXX R-matrix, and consequently no concrete model construction 
was undertaken. Our aim was instead the construction of a concrete integrable quantum 
model, arising from a concrete integrable classical model, thoroughly investigated in [16]. 
It was again the study of the classical model and the possibility of constructing an integrable 
vector generalization at the classical level that paved the way for introducing algebra (4.2) 
and the vector generalization at the quantum level, which was not considered in [23]. 

To conclude, we should say that the main original contributions contained in our paper 
are as follows. 

(1) The explicit derivation of the conserved quantities, including the Hamiltonian, as 
well as their spectra, for a quantum integrable lattice model (already introduced in [23]), 
which, in general, corresponds to the AKNS-type system and may also be considered as a 
lattice NLS model. 

(2) The construction of an integrable vector generalization of the model that provides 
a new exact lattice version of the vector NLS field model which is to our knowledge much 
simpler than all other vector generalizations available in the literature. 

(3) The consauction of a simple deformed model, i.e. a To-type q-boson model, exactly 
solvable at the quantum level. 

The price we have had to pay to achieve all the previous results is the breaking of 
unitary symmetry, which is, however, restored at the continuum limit. We stress again that 
the same advantages and drawbacks also characterize the classical version investigated in 
[161. 

Acknowledgments 

One of the authors (AK) acknowledges with thanks the support of the Alexander von 
Humboldt Foundation. The research reported in the present paper has been carried out 
in the framework of the National Research Program 'Problemi matematici della Fisica'; 
supported by the Italian Ministery of University and Scientific and Technological Research 
(MURST). The authors are also thankful to Professor V Korepin for essential constructive 
remarks and for bringing to our attention [23,24]. 

References 

[ I ]  Alekseev A, Faddeev L D and Volkov Preprim CERNTH-5081191 
121 Moser J and Veselov A P 1991 C m " .  Math. Phys. 139 217 

Bruschi M. Ragnisco 0, Santini P M and Tu G Bang 1991 Physica 49D 
131 Nijhoff F W. Capel H W and Papageorgiou V G 1992 Phys. Rev. A 46 2155 

Nijhoff F W, Popageorgiou V G, Capel H W and Quispel G R W 1992 Inverse Problems 8 597 
Suns Yu B 1990 Phys. Lett. 145A 113 

[4] Tmisov V 0. Takhtajan L A  and Faddeev L D 1983 Ror. Mar. Fir. 57 163 
151 Ablowitz M J and Ladik J F 1976 Srud. Appl. Mark 55 213 
161 lzergin A G and Korepin V E 1981 Sov. Phys.-Dokl. 259 76 
171 lzergin A G and Korepin V E 1982 Nuel. Phys. B 205 401 
IS] Bogolyubov N M and Korepin V E 1986 Teor Mar Fir. 66 455 
[91 Coker D A 1992 Use of projectors for integrable models of quantum field theory Preprint Stony Brwk 

ITP-SB-92-IS 



Simple lattice NLSE 6347 

[IO] Faddeev L D 1980 Suv. Sci. Rev. C 1 107 
Kulish P and Sklyanin E K 1982 Inteysmble Quantum Fr 

[I I] Kundu A and Bxsumallick B 1992 Mod. Phys. Lett 761 
[I21 Gerdzikov V S, lvanov M I  and Kulish P P 1984 J. Math. Phys. 25 25 
[I31 Newell A C, Ablowitl M J .  Kaup D and Segur H 1974 Stud. Appl. Moth. 53 255 
[I41 Kuznetsov V B and Tsiganov A V 1989 J. Phys. A: Math. Gen. 22 U 3  

Enolskii V Z Salerno M. Kostov N A and Scott A C 1991 Phys. Scr. 43 229 
[IS] Chrirtiansen P L, Jorgensen M F and Kuznetsov V B 1993 Lett. Math. Phys. 29 165 
[I61 Memls I, Rqnisco 0 and Tu G Zhnng 1993 A novel hierarchy of integrable lattices Preprint INFN (Inverse 

[I71 Mm3kov S V 1974 SOY. Phys.-JETP 38 243 
[IS] Kulish P P 1979 Phyr Scr. 20 (Preprint LOMI P-3-79) 
[I91 Bogoliubov N M and Bullough R K 1992 Phys. Lett. 168A 264 
[201 T a m  I 1945 J.  Phy.7. (USSR) 9 499 

Dancoff S 1950 Phys. Rev. 78 382 
[Zl] Wndati M, Deguchi T and Akutsu Y 1989 Phys. Rep. 180 247 
[22] MacFarlme A I 1989 J. Phy.  A: Math. Gen. 22 4581 
[23] lmgin  A G and Korepin V E 1984 Len. Math. Phys. 8 259 
[24] Korepin V E, Izergin A G and Bogoliubov N M 1993 Quantum Inverse-Scattering Method and Correlation 

Theories (Springer Lecture Notes in Physics 
ISIJ ed I Hietarinn et 01 (Berlin: Springer) p 61 Y 

Problem at press) 

Functions (Cambridge: Cambridge University Press) 


